

Resummations for Piboson production

Prerit Jaiswal Syracuse University

Multi-Boson Interaction Workshop (BNL)

29th October, 2014

The WW anomaly

	ATLAS	CMS	Theory (MCFM)
\sqrt{s}	$\sigma \; [m pb]$	$\sigma \; [m pb]$	$\sigma \; [ext{pb}]$
7 TeV	$51.9^{+2.0+3.9+2.0}_{-2.0-3.9-2.0}$	$52.4^{+2.0+4.5+1.2}_{-2.0-4.5-1.2}$	$47.04^{+2.02+0.90}_{-1.51-0.66}$
8 TeV	$71.4^{+1.2+5.0+2.2}_{-1.2-4.4-2.1}$	$69.9^{+2.8+5.6+3.1}_{-2.8-5.6-3.1}$	$57.25^{+2.35+1.09}_{-1.60-0.80}$

New Physics Hiding in Plain Sight?

- * B. Feigl, H. Rzehak, and D. Zeppenfeld, New physics backgrounds to the H → W W search at the LHC?, LarXiv:1 205.34681.
- * P. Curtin, P. Jaiswal, and P. Meade, Charginos hiding in plain sight, LarXiv:1206.68881.
- * P. Jaiswal, K. Kopp, and T. Okui, Higgs production amidst the LHC detector, [arXiv:1303.1181].
- * K. Rolbiecki and K. Sakurai, Light stops emerging in WW cross section measurements?, LarXiv: 1303.56961.
- * D. Curtin, P. Jaiswal, P. Meade, and P.-J. Tien, Casting light on BSM physics with SM standard candles, LarXiv:1304.70111.
- * D. Curtin, P. Meade, and P.-J. Tien, Natural SUSY in Plain Sight, LarXiv:1406.08481.
- * J.S. Kim, K. Rolbiecki, K. Sakurai and J. Tattersall, Stop that ambulance! New physics at the LHC?, LarXiv:1406.08581.

An explanation of the WW excess with 110 GeV charginos

Or simply a QCD effect?

ATLAS-CONF-2014-033 (8 TeV WW measurement)

The jet multiplicity distributions and the different background contributions after applying these requirements are shown in Figure 3 for $e\mu$ and the sum of $ee + \mu\mu$ events. A large contribution from top ($t\bar{t}$ and single top) events is visible for jet multiplicities larger than zero. Hence, to reject these backgrounds, the number of selected jets is required to be zero (jet-veto requirement). There are some discrepancies between the data and the MC prediction visible for the zero jet bin.

Both ATLAS and CMS experiments impose jet-veto in their analysis

Need a better understanding of jet-veto.

P. Jaiswal and T. Okui, An Explanation of the WW Excess at the LHC by Jet-Veto Resummation, LarXiv:1407.45371.

Or several QCD effects?

- * WW @NNLO: 5-6 % enhancement w.r.t NLO+gg at 7/8 TeV LHC. [arXiv:1408.5243]
- * Similar enhancement from 'NLO+ π^2 resummation'.
- * What are the scale uncertainties and do we trust them?

- * NLO predictions as much as 300 away from LO central value.
- * Very poor perturbative convergence? Or underestimated scale uncertainties?

Need a better understanding of scale uncertainties.

P. Jaiswal, A New Perspective on Scale Uncertainties for Diboson Processes, [arXiv:1410.xxxx].

Outline

- * Part I: Jet-Veto and Large Logs
- * Part II: Resummation in Effective Field Theories
- * Part III: Complex Scales, Large Logs and Scale Uncertainties
- * Part IV: Results for WW+0 jet production at the LHC

Part - I Jet-Veto and Large Logs

Jet-Veto: Origin of Large Logs

- * Jet-veto example: no jets' with pt > 25 GeV allowed
- * Jet-veto \Longrightarrow Many scales \Longrightarrow Large Logs
 - Inclusive WW measurement:
 Only one scale appears: Mww
 Obvious scale choice: µ ≈ Mww. [µ= µf= µr]
 - * WW + 0 jet measurement:
 Two scales appear: Mww and ptveto

 2 possible choices: µ ≈ Mww or µ ≈ ptveto??

Minimize logs from virtual diagrams.

Minimize logs from real diagrams.

Fixed Order Calculations (pp ->WW)

- * Inclusive NLO K-factor = 1.6
- * 0-jet bin, K-factor ≈ 1.1
- * Disagreement at low ptveto for different scale choices.
- * Agreement for ptveto = 25-30 GeV and reduced scale uncertainty!!
- * Good perturbative convergence?or large log artifacts?

Fixed Order Calculations (pp ->WW)

- * $\sigma_{>0} \approx \sigma_B I1$ + α_s + α_s^2 + ...] (Large K-factor)
- * $\sigma_{\geq 1} \approx \sigma_B \left[\alpha_s \left(L^2 + L + 1 \right) + \alpha_s^2 \left(L^4 + L^3 + L^2 + L + 1 \right) + ... \right] \left(\text{Large logs} \right)$
- * $\sigma_0 = \sigma_{\geq 0} \sigma_{\geq 1}$ (Large cancellations)

How to deal with accidental cancellations?

- . I. W. Stewart and F. J. Tackmann, [arXiv:1107.2117].
 - * Treat scale uncertainties in $\sigma_{\geq 0}$ and $\sigma_{\geq 1}$ as uncorrelated.
 - * Large scale uncertainties in 0-jet bin become evident.

Jet-Veto and Large Logs: The problem of many scales

- * A well known and understood problem in EFTs (Effective Field Theories)
- * EFTs can provide answers on how to resum the large logs.

Part - II Resummation in Effective Field Theories

Example: Fermi's 4-fermion interaction

- * Two scales in the problem:
 - * A: scale below which EFT is valid. $\frac{1}{\Lambda^2} \sim \frac{g}{m_W^2}$
 - * mf: scale at which precision measurements are made
- * Origin of large logs:
 - * Tree level: $c^{(0)} \approx 1$

One-loop:
$$c^{(1)} \approx \frac{\alpha}{4\pi} \log(\frac{\mu^2}{\Lambda^2})$$

- * Large logs for $\mu \approx m_f$ (the measurement scale).
- * How does EFT resum the large logs?

Example: Fermi's 4-fermion interaction

Integrate out W

$$c^{(0)} \approx 1$$
 $c^{(1)} \approx \frac{\alpha}{4\pi} \log\left(\frac{\mu^2}{\Lambda^2}\right)$

Effective interaction

$$\frac{c}{\Lambda^2}(\bar{\psi}\psi)^2$$

Resummation of logs in EFT

- * accomplished through RG running of the coefficient $c(\mu)$ to the desired scale $(\mu = m_f)$.
- * Initial condition for $c(\mu)$: Determine $c(\mu = \Lambda)$ by matching to the full theory. No large logs in this step because $\mu = \Lambda$

c(µ)

 $\mu = mf$

Effective Field Theories for the LHC

to describe QCD interactions

Example: Inclusive Hadronic Cross-sections

* Two scales in the problem:

cross-section

- * Hard scale, μ_h : associated with the hard interaction, for example invariant mass of W-pair for WW production.
- * Soft scale, μ_s : scale of the hadronic masses/jet masses / Λ_{QCP} / the scale at which PDFs are measured.

$$\sigma = \hat{\sigma}(\mu_h, \mu) \otimes f(\mu_s, \mu) \otimes f(\mu_s, \mu)$$
Partonic

Proce

Effective Field Theories for the LHC

to describe QCD interactions

Example: Inclusive Hadronic Cross-sections

$$\sigma = \hat{\sigma}(\mu_h, \mu) \otimes f(\mu_s, \mu) \otimes f(\mu_s, \mu)$$

Logs:
$$\frac{\alpha_s}{4\pi} \log(\frac{\mu_h^2}{\mu^2})$$

$$\frac{\alpha_s}{4\pi}\log(\frac{\mu^2}{\mu_s^2})$$

No large logs at $\mu = \mu_h$

large logs at $\mu = \mu_h$

Simply evaluate partonic cross-section at $\mu = \mu_h$

RG evolve PDFs from $\mu = \mu_s$ up to $\mu = \mu_h$. (DGLAP evolution)

Towards EFT for Jet-Veto Cross-sections

Soft Collinear, Effective Theory

Describes quark jet' with pr ~ prveto

Upshot: RG evolve everything to a common scale ($\mu = p_T^{veto}$)

$$\sigma = \left| \hat{C}(\mu_{h}, \mu) \right|^{2} \otimes B_{1}(\mu_{s}, \mu) \otimes B_{2}(\mu_{s}, \mu) \otimes A_{c}(p_{T}^{veto}, \mu)$$

Wilson Coefficients

$$\log : \frac{\alpha_s}{4\pi} \log(\frac{\mu_h^2}{\mu^2})$$

evolve from μ_h to p_T^{veto} $\hat{C} = U \times C$

Beam functions

$$\frac{\alpha_s}{4\pi} \log(\frac{\mu^2}{\mu_s^2})$$
evolve from μ_s
to prveto
(modified DGLAP)

collinear anomaly

$$\frac{\alpha_s}{4\pi} \log(\frac{p_T^{veto}}{\mu})$$
no large logs
present but
important finite
contributions

 $\mu = \mu_h$ $C(\mu_h, \mu)$ $\mu = p_{\text{T}}^{\text{veto}}$

 $B(\mu_s, \mu)$

Part - III

Complex Scales, Large Logs and Scale Uncertainties

Origin of Complex Scales

 $pp \rightarrow VV'$, where $V \in \{W, Z\}$

Analogous to jet-veto cross sections, Inclusive cross sections:

$$\sigma = C(\mu) \otimes f_1(\mu) \otimes f_2(\mu) \otimes S(\mu)$$

Wilson Coefficient PPFs Soft Function Logarithms in Wilson coefficient, C(\mu):

$$\log \left[(-M^2 - i0^+) / \mu^2 \right]$$

- * Matching of SCET to QCD at $\mu = \mu_h$
- * Choice of μ_h ? $\mu_h = M$ minimizes logs....
- *except that branch cut \Rightarrow i π factors so that double logs produce π^2 factors.
- * Motivates choice of μ_h in the complex μ^2 -plane, e.g. $\mu_h^2 \approx -M^2$

Large logs from Complex Scales Logarithms in Wilson coefficient, C(µ):

- $\log\left[(-M^2-i0^+)/\mu^2
 ight]$ Matching scale $\mu_{
 m h}^2$ complex-valued.
- But PDFs evaluated at factorization scales which are real: $\mu_f^2 \approx M^2$
- Hierarchy of scales in the complex μ^2 -plane
 - \Rightarrow Large Logs $\log(\mu_h^2/\mu_f^2)$
 - * Phase of μ_h^2 : Θ

 $\log(\mu_h^2/\mu_f^2) = i\Theta$

If Logs dominant: $\Theta = -\pi$

If non-Log terms dominant, no preferred value of Θ.

- RG equation for C(μ) known \Rightarrow Evolve from $\mu_h^2 \rightarrow \mu_f^2 \Rightarrow$ Resum Θ terms
- * Vary: $-\pi < \Theta < 0$ similar to M/2 < $|\mu_h| < 2$ M

Scale Uncertainty

- * 3-4% increase in central value prediction w.r.t NLO (dynamic scale).
- * Fixed scale (set to average diboson mass) NLO in reasonable agreement.

Part-IV Results for WW+0 jet production at the LHC

How to count

- * Power Counting parameter in SCET: λ = ptveto/M
 - * All calculations at LO in SCET power counting.
 - * SCET resums pieces singular in the $\lambda \rightarrow 0$ limit (i.e. $\log^n \lambda$)
 - * Corrections beyond the singular pieces: Power Corrections
 - Add them at the end if the full NLO result is known.
 - (Power Corrections) = NLO (Singular pieces of NLO)

$$\sigma_{tot} = \sigma_{resum} + (\sigma_{N^n LO} - \sigma_{resum}^{[N^n LO expansion]})$$

Power Corrections

How to count

- as Counting in Resummed Perturbation Theory
 - Count log[(ptveto)2/M2] as 1/as
 - * NLL: Keep terms up to O(1) NNLL: Keep terms up to $O(\alpha_s)$

$$\sigma = |U \times C|^2 \otimes B_1 \otimes B_2 \otimes A_c$$
Evolution
$$e^{[1/\alpha_s + 1 + \alpha_s + ...]}$$
Beam functions
$$1 + \alpha_s + ... \text{ (1 loop)}$$

$$(2/3 \text{ loops)}$$

Matching coefficient Collinear anomaly $1 + \alpha_s + \dots (1 \text{ loop})$

 $e^{[1+\alpha_s+...]}$ (2 loops)

All ingredients already known in the literature.

NLL and NNLL Results for qq -> WW+0 jet

$$\mu_h^2 \approx M^2$$

- veto Mf ≈ PT
- * Scale uncertainty: Vary μ_f and μ_h by factors of 1/2 and 2.
- * anti-k_T jets (R=0.4)

π^2 Resummation:

 $log[-M^2/\mu_h^2]$ give factors of π^2 when squared if $\mu_h^2 > 0$.

Better choice: $\mu_h^2 \approx -M^2$

Consistency Checks and Power Corrections

- * Recall: SCET resums terms singular in $p_{\tau}^{\text{veto}}/M \rightarrow 0$
- * Power corrections suppressed by powers of ptveto/M.
- * Consistency Check: For small p_1^{veto} , NNLL cross-section expanded to $\mathcal{O}(\alpha_s)$ should match fixed-order NLO calculations.
 - ✓ Good agreement between our resummed results expanded to $O(\alpha_s)$ and MCFM for $q\overline{q}$ →WW at NLO in the 0-jet bin for small p_T^{veto} .

Power Corrections ≤ - 2%

NNLL+NLO Results

'Consistent' scheme 'Inconsistent' scheme

- * Inconsistent scheme': Improved version of NLL by including $O(\alpha_s)$ terms in the matching coefficient.
- * Difference between NLL and NNLL is dominated by two-loop effects of jet-veto p_T^{veto}/M $\alpha_s^2[1+\log R+R^2+R^4+...]$

Comparison with MC+Parton Showers

(Includes LO gg contribution assuming 100% of them pass jet-veto)

WW+0/1/2 jet matched: LO Madgraph5 + Pythia6

MC@NLO + Herwig6

Powheg v1 + Pythia6

Jet algorithm: anti-k_T, R=0.4 CTEQ6L for LO MC, CT1 Onlo for NLO MC, MSTW08nnlo for NNLL+NLO

Comparison with LHC data

	$\sqrt{s} = 7 \mathrm{TeV}$	
	R = 0.4	R = 0.5
	$p_{ m T}^{ m veto}=25~{ m GeV}$	$p_{\mathrm{T}}^{\mathrm{veto}} = 30~\mathrm{GeV}$
ATLAS	$37.9^{+3.8\%}_{-3.8\%} + 5.0\% + 3.8\%$	
$\sigma_{WW}^{ m veto} \; [m pb]$	37.9-3.8%-5.0%-3.8%	_
CMS		41 E+3.8%+7.2%+2.3%
$\sigma_{WW}^{ m veto} \; [m pb]$	_	$41.5^{+3.8\%}_{-3.8\%}{}^{+7.2\%}_{-7.2\%}{}^{+2.3\%}_{-2.3\%}$
Theory	27 6+4.2%	20.1+2.8%
$\sigma_{WW}^{ m veto} \; [m pb]$	$37.6^{+4.2\%}_{-3.4\%}$	$39.1^{+2.8\%}_{-2.5\%}$
Theory	$2.1^{+13.5\%}_{-11.4\%}$	$2.3^{+11.5\%}_{-10.6\%}$
$\sigma_{h o WW}^{ ext{veto}} ext{ [pb]}$	2.1-11.4%	2.3-10.6%

	$\sqrt{s} = 8 \mathrm{TeV}$	
	R = 0.4	R = 0.5
	$p_{ m T}^{ m veto}=25{ m GeV}$	$p_{\mathrm{T}}^{\mathrm{veto}} = 30~\mathrm{GeV}$
ATLAS	$48.1^{+1.7\%+6.2\%+3.1\%}_{-1.7\%-5.2\%-2.9\%}$	_
$\sigma_{WW}^{ m veto}~{ m [pb]}$	40.1 - 1.7% - 5.2% - 2.9%	_
CMS		$54.2^{+4.0\%+6.5\%+4.4\%}_{-4.0\%-6.5\%-4.4\%}$
$\sigma_{WW}^{ m veto}~{ m [pb]}$	_	04.2 _{-4.0%} -6.5%-4.4%
Theory	$44.9^{+3.8\%}_{-3.1\%}$	$46.8^{+2.5\%}_{-2.3\%}$
$\sigma_{WW}^{ m veto} \; [m pb]$	44.9 -3.1%	$40.8_{-2.3\%}$
Theory	$2.6^{+13.3\%}_{-11.7\%}$	2 0+11.5%
$\sigma_{h o WW}^{ m veto} \; [m pb]$	2.0_11.7%	$2.9^{+11.5\%}_{-11.5\%}$

Similar Calculations

- * LarXiv:1407.44811 Transverse momentum resummation Patrick Meade, Harikrishnan Ramani, Mao Zeng
 - * 3-7% reduction in discrepancy
- * LarXiv:1410.47451 NNLL+NNLO extrapolation from Drell-Yan Pier Francesco Monni, Giulia Zanderighi

Todo for experimentalists

- * Jet-veto cross sections at high invariant mass Prell-Yan.
- * Cross-sections as a function of ptveto and R (jet radius parameter) for diboson and Drell-Yan (at high invariant mass).